An Asymptotic Fitting Finite Element Method with Exponential Mesh Refinement for Accurate Computation of Corner Eddies in Viscous Flows

نویسندگان

  • Alexander V. Shapeev
  • Ping Lin
چکیده

It is well known that any viscous fluid flow near a corner consists of infinite series of eddies with decreasing size and intensity, unless the angle is larger than a certain critical angle [28]. The objective of the current work is to simulate such infinite series of eddies occurring in steady flows in domains with corners. The problem is approached by high-order finite element method with exponential mesh refinement near the corners, coupled with analytical asymptotics of the flow near the corners. Such approach allows one to compute position and intensity of the eddies near the corners in addition to the other main features of the flow. The method was tested on the problem of the lid-driven cavity flow as well as on the problem of the backward-facing step flow. The results of computations of the lid-driven cavity problem show that the proposed method computes the central eddy with accuracy comparable to the best of existing methods and is more accurate for computing the corner eddies than the existing methods. The results also indicate that the relative error of finding the eddies’ intensity and position decreases uniformly for all the eddies as the mesh is refined (i.e. the relative error in computation of different eddies does not depend on their size).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Viscous flows in corner regions: Singularities and hidden eigensolutions

Numerical issues arising in computations of viscous flows in corners formed by a liquidfluid free surface and a solid boundary are considered. It is shown that on the solid a Dirichlet boundary condition, which removes multivaluedness of velocity in the ‘moving contact-line problem’ and gives rise to a logarithmic singularity of pressure, requires a certain modification of the standard finite-e...

متن کامل

Cover interpolation functions and h-enrichment in finite element method

This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009